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Sustained Release of Multiple Growth Factors from Injectable Polymeric System
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Purpose. The aim was to investigate that a bio-degradable alginate and poly lactide-co-glycolide (PLG)
system capable of delivering growth factors sequentially would be superior to single growth factor
delivery in promoting neovascularization and improving perfusion.
Methods. Three groups of apoE null mice underwent unilateral hindlimb ischemia surgery and received
ischemic limb intramuscular injections of alginate (Blank), alginate containing VEGF165 (VEGF), or
alginate containing VEGF165 combined with PLG microspheres containing PDGF-BB (VEGF/PDGF).
Vascularity in the ischemic hindlimb was assessed by morphologic and immunohistochemical end-points,
while changes in blood flow were assessed by Laser Doppler Perfusion Index. Muscle VEGF and PDGF
content was assessed at multiple time points.
Results. In the VEGF/PDGF group, local tissue VEGF and PDGF levels peaked at week 2 and 4,
respectively, with detectable PDGF levels at week 6. At week 6, mean vessel mean diameter was
significantly greater in the VEGF/PDGF group compared to the VEGF or Blank groups with evidence of
well-formed smooth muscle-lined arterioles.
Conclusions. Sequential delivery of VEGF and PDGF using an injectable, biodegradable platform
resulted in stable and sustained improvements in perfusion. This sustained, control-released, injectable
alginate polymer system is a promising approach for multiple growth factor delivery in clinical
application.
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INTRODUCTION

Neovascularization in adults results not only from angio-
genesis but also from vasculogenesis in which the sprouting
and growth of small vessels along with the branching and
extension of existing capillaries by the assembly of endothe-
lial cells from preexisting vessels develop. Until recently,

vascular endothelial growth factor (VEGF) was proven to be
specific and critical for blood vessel formation (1). Recent
reports suggest that local administration of VEGF signifi-
cantly increases myocardial perfusion by adenovirus and
improvement in angina and favorable trends in exercise
treadmill test time and angina frequency by recombinant
protein (2,3). Platelet-derived growth factor (PDGF), which
recruits smooth muscle cells and pericytes to promote
extracellular matrix deposition to stabilize neovessels, has
recently been demonstrated to result in larger, mature vessel
formation, especially if delivered following VEGF (4,5).

Although growth factors clearly play important roles in
angiogenesis and arteriogenesis, the appropriate mode for
making these factors available at the desired site with desired
dosage for a desired period of time remains unclear.
Therapeutic angiogenesis via adenovirus has significant
limitations, such as biologically brief activity or expression
(less than 3 weeks). Bolus delivery of protein molecules leads
to undesirable systemic effects and toxicity and an insufficient
local concentration for the required time-frame due to the
rapid degradation and subsequent distribution throughout the
body. Therefore, a new platform to deliver growth factor in
an optimized, controlled pattern is absolutely needed. We
have developed a polymeric growth factor delivery vehicle in
which dual delivery of VEGF and PDGF resulted in a rapid
formation of a mature vascular network. This structural

1 Division of Environmental Health Sciences, College of Public
Health, The Ohio State University, Columbus, Ohio 43210-1252,
USA.

2Division of Cardiovascular Medicine, College of Medicine, The
Ohio State University, Columbus, Ohio 43210-1252, USA.

3Davis Heart & Lung Research Institute, College of Medicine, The
Ohio State University, 460W 12th Avenue, Room 398, Columbus,
Ohio 43210-1252, USA.

4 School of Engineering and Applied Sciences, Harvard University,
Cambridge, Massachusetts, USA.

5 New York Center for Biomedical Engineering, The City University
of New York, New York, New York, USA.

6 Division of Cardiovascular Diseases, Department of Internal
Medicine, University of Michigan, Ann Arbor, Michigan 48109-
0306, USA.

7 To whom correspondence should be addressed. (e-mail: sanjay.
rajagopalan@osumc.edu)

Pharmaceutical Research, Vol. 27, No. 2, February 2010 (# 2009)
DOI: 10.1007/s11095-009-0014-0

0724-8741/10/0200-0264/0 # The Author(s) 2009. This article is published with open access at Springerlink.com 264



polymer scaffold system is capable of delivery of multiple
angiogenic factors with distinct kinetics and is potentially
applicable for the patients from diabetic or other ischemic
peripheral diseases.

In this study, we tested the hypothesis that dual delivery
of VEGF and PDGF, in a controlled, sequential pattern of
injectable gel form, can direct the formation of a mature
vasculature, as compared to the delivery of VEGF alone. The
system developed to deliver multiple growth factors may find
broad utility in the clinical application of peripheral and
cardiovascular ischemic diseases.

MATERIALS AND METHODS

Alginate Fabrication and Analysis of Release Kinetics In Vitro

The details of the fabrication were reported previously
(6). Briefly, alginate hydrogels were formed from a 2% (w/w)
solution of alginate polymer. The alginate (ProNova MVG;
ProNova Polymers, Norway) used to form gels was a
combination of two different molecular weight polymers
(250,000 and 60,000 Dalton) at a ratio of 6:4. Both alginate
polymers were oxidized to a degree of 1% prior to gel
formation to create sites in the polymer that were susceptible
to degradation in aqueous medium. To prepare gels, the 2%
alginate solutions were combined with a calcium solution
(40 µl of Ca2+ per 1 ml of 2% alginate solution) using a 1 ml
syringe. In the experiment using PDGF delivery, the growth
factor was first pre-encapsulated in PLG microspheres that
were combined with the alginate solution prior to gelling.
These microspheres were prepared using a double emulsion
process as previously described (7). Alginates were fabricated
with 125I-VEGF or 125I-PDGF as tracers for in vitro release
studies, and these studies were performed as previously
described (4).

Animals and Surgical Procedures

Male apoE–/– mice (Jackson Laboratories, Bar Harbor,
ME) aged 6 weeks were used in this study. ApoE–/– mice
were fed a high fat diet (21% fat, 0.15% cholesterol, Harlan
Teklad) for at least 6 weeks prior to enrollment in the study.
Animals were handled according to protocols approved by
the University of Michigan Committee on Use and Care of
Animals and cared for according to standards in the Guide for
the Care and Use of Laboratory Animals. Mice were
anesthetized with an intraperitoneal injection of a mixture of
ketamine 80 mg/kg and xylazine 5 mg/kg prior to all surgical
procedures. Unilateral hindlimb ischemia was induced as
previously described (5,8). After the vessel ligation, 45 mice
were randomized into one of the three groups: alginate
solution alone, alginate with VEGF, or alginate with VEGF
plus PDGF. Four separate injections of total volume 50 µl of
alginate solutions, or alginate solutions with microspheres
containing 3 µg VEGF165, or alginate solutions with
microspheres containing 3 µg VEGF165 plus 3 µg PDGFBB,
were performed directly into the area where the vessels were
ligated with a 25G needle (Becton Dickinson) immediately
after the vessel ligation. The incision was surgically closed, and
the mice were observed up to 6 weeks.

Laser Doppler Perfusion Imaging

Hindlimb perfusion was measured using a laser Doppler
perfusion imaging (LDPI) system (Lisca Inc, Sweden).
Consecutive measurements were obtained by scanning of
the region of interest (legs and feet) on anesthetized animals.
The stored perfusion values were retrieved for analysis. To
account for variables such as ambient light and temperature,
the results are expressed as the ratio of perfusion in the left
(ischemic) versus right (normal) limb (5).

Microcomputed Tomography Imaging

After anesthesia and thoracotomy, left ventricle was
catheterized and injected with heparinized saline (0.9%
sodium chloride with 5,000 U of heparin) at an appropriate
pressure in order to clear the cardiovascular network of the
remaining blood by right atrium opening. A low-viscosity,
radiopaque liquid polymer compound (MV-122, Flow Tech
Inc., Carver, MA) was then injected through the cannulae,
and the hindlimbs were then immersed in 10% buffered
formalin and placed under refrigeration at 4°C overnight to
allow polymerization of compound, followed by 95%
alcohol solution for one day. At successive 24-h intervals,
the glycerin concentration was raised from 30% to 50% to
75%, and finally to pure glycerin. Then, the specimen was
kept in 10% formalin for microcomputed tomography
(Micro-CT) imaging as described (9). All specimens were
traced over their entire length, and cross-sections were
analyzed at 1-mm intervals.

Histological Analysis, Immunoassay and Immunohistochemistry

Mice were sacrificed at predetermined time points (day 14–
42) after surgery with an overdose of sodium pentobarbital. For
total protein and DNA extraction, isolated tissue samples
were rinsed in PBS to remove excess blood, snap-frozen in
liquid nitrogen, and stored at −80°C until use (10). Recombinant
protein concentration in tissue lysate was determined using
Quantikine Immunoassay systems for human VEGF and
human PDGF BB (R&D Systems Inc., Minneapolis, MN)
according to the manufacturer’s instructions. Optical density
was measured at 405 nm with a wavelength correction of
540 nm using an enzyme-linked immunosorbent assay (ELISA)
reader (Spectra Max 340, Molecular Devices Corp., Sunnyvale,
CA).

For immunohistochemistry, retrieved scaffolds and
muscle tissue from ischemic and nonischemic hindlimbs were
fixed in 10% zinc formalin overnight. Tissues were paraffin
embedded and sectioned into 5 µm-thick sections according
to standard procedures. Tissue sections were stained with
antibodies for CD31 (BD Biosciences PharMingen, San
Diego CA) or α-smooth muscle actin (α-SMA, DakoCyto-
mation, Carpinteria, CA). For measurement of capillary
density, two different sections were taken 5 mm apart, and
the capillaries counted per 30 randomly chosen high-power
fields on the two sections (8). The number of positively
stained blood vessels was manually counted and normalized
to the tissue area using a light microscope Olympus BH-2
(Tokyo, Japan). To obtain the average vessel cross-sectional
area, a minimum of 10 individual images were sampled, and
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at least 100 blood vessels were measured. Images were
analyzed using Image Pro-plus 4.0 (Media Cybernetics, CA).

Statistical Analysis

All values are expressed as mean ± SD, and were
analyzed by one-way ANOVA with a Friedman test using
GraphPad Prism software (version 3.00, GraphPad Software
Inc., CA). A p value<0.05 was considered significant.

RESULTS

Injectable Polymeric Release System

Fig. 1 shows the in vitro release kinetics of pre-
encapsulated PDGF and VEGF of alginate fabricated from
PLG. Approximately 50% of the VEGF was released from
the alginate within 2 days, and reached more than 70% by
day 12 and more than 80% by day 36. In contrast to VEGF,
PDGF was released relatively slower, with about 10% within
2 days, and reached more than 40% by day 12 and more than
70% by day 36 (Fig. 2).

AcceleratedRecovery ofHindlimbBlood Flow byVEGF/PDGF

Blood flow was reduced to less than 20% of the baseline
following ligation surgery. There was no significant difference
in limb perfusion between groups in the first 2 weeks after the
operation. The blood flow remained severely impaired and
showed delayed recovery after vessel ligation in the group
that received blank alginate solution containing no growth
factor. The VEGF/PDGF group of 3 µg VEGF165 with 3 µg
PDGFBB recovered significantly faster than the blank or the
VEGF group of 3 µg VEGF165 and achieved more than 80%
of the initial value by the end of the experiment. VEGF

showed a positive effect on the recovery of perfusion from
week 3 to week 6 compared to the blank group, but weaker
than the VEGF/PDGF group (Fig. 3). Micro-CT scanning
showed clear restoration of blood flow in the previously
ligated vessels and the filling of collateral vessels by the
VEGF or VEGF/PDGF treatment, compared to the blank
(Fig. 4).

Increased Capillary Vessel Density by Both VEGF and VEGF/
PDGF Delivery

A small number of capillary vessels in the muscle were
positively stained following the injection of blank alginate
solution, even after 6 weeks intervention (Fig. 5, top row).
VEGF alone or VEGF/PDGF delivery did not initiate a
significant increase in capillary vessel density in the first
2 weeks, but both did induce a statistically significant
increase in capillary vessel density from week 3 to week 6
(Fig. 5, middle and bottom rows). In addition, VEGF alone
led to the highest density of vessels among the three
groups (Fig. 7).

VEGF/PDGF Results in the Formation of Matured Vessels

To assess the maturity of blood vessels, α-SMA was
stained on the muscle tissue. We found few positive staining
vessels in the blank scaffold group (top row of Fig. 6). With
VEGF alginate injection, the number of positive staining
vessels increased (middle row of Fig. 6). Sections from the
dual delivery of VEGF/PDGF were observed to have much
stronger a-SMA staining and larger, thicker vessel formation
(bottom row of Fig. 6). The measurement of cross-sectional
areas of blood vessels from α-SMA-stained thigh muscle of
the mice showed a significant increase in mean vessel
diameters and a distribution towards larger, mature vessels
in VEGF/PDGF group (Fig. 8). In contrast, VEGF resulted in
a small increase in vessel diameter (Figs. 7 and 8).

Fig. 1. In vitro release kinetics of pre-encapsulated PDGF and VEGF
from alginate fabricated from PLG.
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Fig. 2. Representative image of CD 31 staining of thigh muscle
treated by intramuscular injection of alginate containing VEGF at
week 3, ×200. A, alginate; B, new tissue; C, new vessel; D,
inflammatory cells.
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Sustained Growth Factor Delivery

Verification of sustained growth factor delivery in vivo
was accomplished by testing the concentration of VEGF or
PDGF from muscle tissue where the injections occurred by
ELISA. The concentrations of VEGF or PDGF in the thigh
muscle obtained from the VEGF or VEGF/PDGF groups
reached a plateau from week 2 to week 4. Unlike human
VEGF, human PDGF was still detectable at the end of the
experiment at week 6 (Fig. 9).

DISCUSSION

Decades of experimental studies in a variety of animals
have raised the concept that new vessels could be created by

growth factor(s) to reduce ischemia despite most of the
clinical trials so far being disappointing (11). New blood
vessel formation is critical to many cardiovascular diseases. It
is reported that 90% of major amputations are performed for
ischemia, 25% of patients with critical limb ischemia require
amputation, and the incidence of critical limb ischemia can be
approximately 500 to 1,000 new cases per million persons per
year (12). Coronary artery disease is a major health problem
for over 12 million Americans, and an increasing number of
patients are not candidates for revascularization through
traditional surgical methods. The alternative methods that
could form new blood vessels via branching from existing
vessels bring hope to these patients. In fact, the primary
physiological response to tissue ischemia is the local growth
of capillaries, and a vast increase in the capillary bed size is
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Fig. 3. Computer-assisted quantitative analyses of hindlimb blood flow in apoE−/− mice
demonstrated significantly enhanced ratio of ischemic to untreated limb blood perfusion in
mice ischemic limb receiving intramuscular injections of alginate (Blank), alginate
containing VEGF165 (VEGF), or alginate containing VEGF165 combined with PLG
microspheres containing PDGF-BB (VEGF/PDGF).
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Fig. 4. Representative images of micro-CT after 5 weeks intramuscular injections of alginate (Blank),
alginate containing VEGF165 (VEGF), or alginate containing VEGF165 combined with PLG microspheres
containing PDGF-BB (VEGF/PDGF).
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required to compensate for occlusion of a single medium-size
artery (13). Although whether VEGF is able to induce the
growth of larger vessels (arterioles and arteries) is still
unclear, VEGF seems to mediate the recruitment of circulat-

ing monocytes that then stimulate a local arteriogenic process
and play an important role in the maintenance of newly
formed vasculature. There is evidence that newly formed
vasculature in genetically altered mice completely disap-

Week 2 Week 4 Week 6

Blank

VEGF

V/P

Fig. 5. Representative images of CD31 staining from thigh muscle of apoE−/− mice treated by intramuscular
injections of alginate (Blank), alginate containing VEGF165 (VEGF), or alginate containing VEGF165
combined with PLG microspheres containing PDGF-BB (VEGF/PDGF) at 2, 4, and 6 weeks, ×200.

Week 2 Week 4 Week 6
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Fig. 6. Representative images of α-SMA staining from thigh muscle of apoE–/– mice treated by intramuscular
injections of alginate (Blank), alginate containing VEGF165 (VEGF), or alginate containing VEGF165
combined with PLG microspheres containing PDGF-BB (VEGF/PDGF) at 2, 4, and 6 weeks, ×200.
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peared after a limited VEGF exposure, but that a longer
duration of VEGF stimulation (10–14 days) resulted in the
production of mature vessels even after withdrawal of the
growth factor (14). In addition to VEGF, PDGF has been
known to promote capillary growth leading to the develop-
ment of larger vessels (15). Our data showed that a specific
combination of these two angiogenic growth factors estab-
lished functional and stable vascular networks and provided
further information for the clinical trials for the treatment of
vascular ischemic diseases.

The identification of growth factors involved in angio-
genesis has led to their application in treating coronary artery
disease and other diseases involving tissue ischemia. Bolus
injections of solutions of growth factors have been inves-
tigated as treatments for myocardial ischemia, with promising
results in animal models and small-scale clinical trials (16).
However, these delivery methods did not appear to have as
significant an effect in large clinical trials (17). This is likely
related to the very short half-lives (minutes to hours) of these
factors in vivo. One of the most important lessons from the
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current generation of clinical trials, and ongoing basic
research, has been the recognition of the need for prolonged
tissue exposure to the growth factor for the development of
robust and sustained neovascularization (18). Although a
number of animal studies demonstrated the ability of a single
bolus of growth factor to induce vigorous new vessel
formation (19), such an approach has not been highly
successful in clinical practice. One possible reason why bolus
delivery of growth factor is not succeful in cinical trials is that
the prolonged presence of a growth factor might be required
to secure the survival of newly formed vasculature (14).
Whether for tissue engineering or therapeutic applications,
new vessels formed through the growth factor delivery
strategies are typically small and lack pericyte incorporation.
This finding suggests that they may not be functional long-
term and may be subject to regression. A better, synchronized
control of angiogenic cascade may be required for the
formation of functional, stable vascular beds, since VEGF
delivery followed by PDGF resulted in larger, mature vessel
structures (4,5). The theory is also confirmed by the current
study, showing that the initial delivery of VEGF, following by
a sustained release of PDGF, led to not only the formation
but also the maturation of blood vessels. It is likely that the
optimal time of exposure will differ according to the
particular growth factor, formulation and delivery strategy,
and so might need to be established for each combination.

Several important factors have to be considered in the
design of a delivery system. First, it is essential to identify the
key growth factor or factors to deliver for a particular tissue
application, such as VEGF, FGF, and PDGF. The application
of growth factors as therapeutic molecules has focused on
those that are best characterized and available in large
quantities as recombinant proteins. Second, the mode of
factor delivery must target the desired cell population or
tissue and minimize signal propagation to non-target cells and
tissues. The application of growth factors involving
intravenous injection is not localized to the target and is also
ineffective because of the growth factors’ short half-lives.
Third, the controlled delivery of factors requires a relatively
long-term maintenance of biologic activity within the system.
Therefore, the method of fabrication that does not require
harsh solvents or high temperatures is often desirable if the
protein itself is used as the regenerative agent. Finally, the
release profile of the growth factor from the system should be
controlled temporally and spatially to be appropriate for a
specific tissue injury or disease. Although numerous methods
can be used to deliver sufficient amounts of growth factors to
induce new vessel formation in animal models, the options in
the clinic are very limited. The systemic administration to
patients by intravenous infusion of angiogenic agents is
complicated by dose-limiting hypotension and concerns
regarding inappropriate angiogenesis resulting from systemic
exposure. Therapeutic angiogenesis could increase a patient’s
future risk of cancer by creating an additional blood supply to
small tumors in the body, thereby increasing their growth
(18). It is possible that VEGF expression resulting from gene
transfer could promote the development of a tumor that is
too small to be recognized for months or even years (20). The
polymeric delivery system with hydrogel and microspheres we
used in the current study has several advantages. First,
multiple growth factors or transplant cells that secrete the

desired factor can be delivered. Second, the growth factors
can be released in a controlled, sequenced, and time-depend-
ent manner by controlled growth factor diffusion, polymer
degradation, and the composition of the polymer. The
combination of the different molecular weight polymers, both
oxidized, allows us to create gels that degrade in vitro and in
vivo in an appropriate time for drug delivery, while main-
taining the ability of the system to form space filling gels that
can provide a sustained release of a protein growth factor.
Third, the delivery routes are very versatile, from topical to
intra-operational, through local injection or through interven-
tional catheter. Fourth, the delivery can be specifically
targeted to prevent systemic side effects. Fifth, they are
biocompatible. Such polymeric carriers have already obtained
the Food and Drug Administration approval for the treat-
ment of diabetic foot ulcers by PDGF delivery (21) and have
been proved safe for patients. Various types of polymeric
materials have been used for controlled release of bFGF and
VEGF, including alginate hydrogels, PLG microspheres, and
porous PLG scaffolds (22,23). Biodegradable synthetic poly-
mers have found numerous applications of medical devices
(e.g., sutures) due to the degradation into natural products of
lactic and glycolic acid that enter into metabolic pathways.
The physical properties of these polymers can also be readily
altered by varying the ratio of lactide:glycolide, molecular
weight, and crystallinity to meet various purposes in the
clinic, and have the potential of flexibility to combine with
other mediators to program angiogenic process and outcome
(24–26).

0

200

400

600

D-14 D-28 D-42 

D-14 D-28 D-42 

V
E

G
F

 C
o

n
te

n
t,

 p
g

/g
 m

u
sc

le

VEGF

VEGF/PDGF

0

200

400

600

P
D

G
F

 C
o

n
te

n
t,

 p
g

/g
 m

u
sc

le

Fig. 9. VEGF concentration from thigh muscle of apoE–/– mice
treated by alginate containing VEGF165 (VEGF), or alginate
containing VEGF165 combined with PLG microspheres containing
PDGF-BB (VEGF/PDGF); or PDGF concentration from thigh
muscle treated by alginate containing VEGF165 combined with PLG
microspheres containing PDGF-BB (VEGF/PDGF).
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Growth factor delivery is obviously a therapeutically
important approach in proangiogenic experimental research
and clinical application, such as cardiovascular regeneration.
The limitation of single growth factor delivery has lead the
way to the delivery strategy of multiple growth factors
working in an orchestrated sequence to promote the regen-
eration of larger, stable vasculature. The current polymeric
drug delivery system needs further investigation, including
the appropriate dose, formulation, and administration route
in both small and large animal models in order to determine
how to achieve optimal myocardial and peripheral vascular
angiogenesis, and hopefully opens a novel gateway for
cardiovascular angiogenic therapy.
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